Adaptive Multiresolution Discontinuous Galerkin Schemes for Conservation Laws: Multi–Dimensional Case
نویسندگان
چکیده
The concept of multiresolution-based adaptive DG schemes for nonlinear one-dimensional hyperbolic conservation laws has been developed and investigated analytically and numerically in N. Hovhannisyan, S. Müller, R. Schäfer, Adaptive multiresolution Discontinuous Galerkin Schemes for Conservation Laws, Math. Comp., 2013. The key idea is to perform a multiresolution analysis using multiwavelets on a hierarchy of nested grids for the data given on a uniformly refined mesh. This provides difference information between successive refinement levels that may become negligibly small in regions where the solution is locally smooth. Applying hard thresholding the data are highly compressed and local grid adaptation is triggered by the remaining significant coefficients. The focus of the present work lies on the extension of the originally one-dimensional concept to higher dimensions and the verification of the choice for the threshold value by means of parameter studies performed for linear and nonlinear scalar conservation laws.
منابع مشابه
Adaptive multiresolution discontinuous Galerkin schemes for conservation laws
A multiresolution-based adaptation concept is proposed that aims at accelerating Discontinuous Galerkin schemes applied to nonlinear hyperbolic conservation laws. Opposite to standard adaptation concepts no error estimates are needed to tag mesh elements for refinement. Instead of this, a multiresolution analysis is performed on a hierarchy of nested grids for the data given on a uniformly refi...
متن کاملA Parallel hp-Adaptive Discontinuous Galerkin . Method for Hyperbolic Conservation Laws
This paper describes a parallel adaptive strategy based on discontinuous hp-finite element approximations oflinear, scalar, hyperbolic conservation laws. The paper focuses on the development of an effective parallel adaptive strategy for such problems, Numerical experiments suggest that these techniques arc highly parallelizablc a.nd deliver super-linear rates of convergence, thereby yielding e...
متن کاملThe Runge-kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws Iv: the Multidimensional Case
In this paper we study the two-dimensional version of the RungeKutta Local Projection Discontinuous Galerkin (RKDG) methods, already defined and analyzed in the one-dimensional case. These schemes are defined on general triangulations. They can easily handle the boundary conditions, verify maximum principles, and are formally uniformly high-order accurate. Preliminary numerical results showing ...
متن کاملThe Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws. IV: The Multidimensional Case Author(s):
In this paper we study the two-dimensional version of the RungeKutta Local Projection Discontinuous Galerkin (RKDG) methods, already defined and analyzed in the one-dimensional case. These schemes are defined on general triangulations. They can easily handle the boundary conditions, verify maximum principles, and are formally uniformly high-order accurate. Preliminary numerical results showing ...
متن کاملhp-VERSION DISCONTINUOUS GALERKIN METHODS FOR HYPERBOLIC CONSERVATION LAWS: A PARALLEL ADAPTIVE STRATEGY
This paper describes a parallel algorithm based on discontinuous hp-finite element approximations of linear, scalar, hyperbolic conservation laws. The paper focuseson the development of an elTcctiveparallel adaptive strategy for such problems. Numerical experimeOlssuggest that these techniques are highly parallelizable and exponentially convergent, thereby yielding cflicien.:yIllany times super...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013